

Reacted and Activated Rubber - The new frontier in improved pavements

Dr. Jorge B Sousa

The Issue

- For about 50 years the paving industry has been trying to take advantage of the elastomeric material and of the carbon black and silica included in recycled tires.
- Those elastomeric materials are know to improve elastic recovery on bitumen. The carbon black and silica improve aggregate interlock

The Problem:

- A crumb rubber alone cannot be placed directly into the mixes (dry method) in significant qualities because it will swell and absorb the bitumen causing raveling in the roads
- The wet method (about 20% crumb rubber blended with bitumen and reacted over 1 hour at about 175 C) works well but requires that every contractor buys expensive equipment... around 700 000 USD (only cost effective for large projects)
- If crumb rubber is used in terminal blends it is essentially a waste of product because over time it becomes all digested. Actual improvements on mix properties are only a fraction of what they could be.

The Solution

- USE OF REACTED AND ACTIVATED RUBBER...that it can be used directly into the plugmill of a contractor's plant.
- A proper reacted and activated treatment will insure that the rubber is already swelled with bitumen so it will not absorb any more bitumen.
- It will also be treated to blend well and disperse very well and effectively into bitumen
- Large quantities can then be used without any real limitation beyond the need of enough bitumen to wet all surfaces, does really making the binder much more "elastic".

REACTED and ACTIVATED RUBBER

(components in optimized proportions and activating environment)

Bitumen

Crumb Rubber

FILLERS

ALL CARDEN AND AND AND AND

RAR X CAN BE PLACED DIRECTLY INTO THE CONTRACTORS PUGMILL

SHRP Corporation

RAR Concept **Best of both worlds**: a) Easy to apply and use as in the "dry method"... directly in to the pugmill b) Performance and cost effectiveness beyond that of the "wet method"

RAR CREATES AN ELASTOMERIC NETWORK IN THE BINDER

BINDER EVALUATIONS Traditional PG Graded (USA)

SHRP Corporation

ration

New Formulations

LOW TEMPERATURE PROPERTIES IMPROVE WITH INCREASE RAR CONTENT

SHRP Corporation

JNR VALUES SHOW IMPROVED ELASTIC RECOVERY PROPERTIES

EVEN HARD TO MODIFY BITUMENS SHOW AMAZING PROPERTIES WITH 21% RAR CONTENT

Viscosity - Bitumen 35/50 + RAR X

MIX EVALUATIONS

RAR X content in mixes:

By Weight of Mix-

(14% by Binder content) 1% Dense (25% by binder content) 2 % 3 to 4% (30% by binder content) SMA 3 to 4% (35% by binder content) 4 to 5% (40% by binder content) GAP THINGAP Open

RAR X in SMA

	<mark>5.9</mark>				<mark>6.4</mark>			<mark>6.6</mark>			7.5				
	Samples iB0-1TA160iB0-1-H-C							Samples IBO-0.5STA160IBO-0.5HC							
	4	5	6 1		2	3	4	5	6	1	2	3			
Air Voids	6.0	5.9	5.9	6.8	6.9	5.4	7.0	6.5	6.3	8.1	7.0	7.5			
Density			24	14		2418									
	ITS							ITS							
	ITS dry (kPa) ITS wet (kPa)						ITS dry (kPa) ITS wet (kPa)					Pa)			
	705	712	699	554	623	739	854	796	793	576	656	550			
	Ave	erage:	705	Ave	erage:	639	Ave	erage:	814	Average		594			
			TSR:	90.5			TSR: 73.0								

GAP and THINGAP GRADED MIXES (about 30 to 40% of binder content....!!!)

SHRP Corporation

RUTTING

		B6.19RAR3.04				B5.45 R	AR3.78	B4.71RAR4.52		iBind		Fibers		
		1	2	3	4	9	10	11	12	L5	L6	L7	L8	
	Air Voids	4.3	3.9	4.7	5.6	5.3	5.4	6.0	6.7	3.9	4.9	4.1	4.8	
	Density Gr/cm ³	2418				24	46	24	52	2547		2527		
			Rut	ting		Rutting		Rutting		Rutting		Rutting		
	Deformation at 120 min (mm)	1.17	1.30	2.58	1.77	1.47	1.64	1.23	1.45	2.36	2.24	2.71	3.03	
	AVG. Deformation at 120 min (mm)	1.	24	2.1	18	1.!	56	1.3	34	2.3	30	2.8	37	
ge tion Is	V30/45 (10-3mm.min-1)		7.5		12.8		7.5		9.5		13.0		14.0	
veraç orma peed	V75/90 (10-3mm.min-1)	6.0		6.5		6.2		6.0		11.2		10.5		
A Defc S	V105/120 (10-3mm.min-1)	5.5		5.	.8	5.0		5.2		10.0		10.0		

			·		Re	sults of La	boratory	Tests					·	
Slab			Bulk Specific	BMT	Porosity	AVERAGE D	SPEEDS (10 [°]	Deformation (rutting) (mm)			Hours at	% of	%	
			Gravity (g.cm ³)			V35/46	V75/91	V105/121	120 min	After Test	After hours at 60ºC	60ºC	deformation	RECOVERY
1			2.314	2.418	4.3	7.5	6.0	5.5	1.17	4	3	37	75	25
2	REACTED AND	B6.19RA R3.04	2.324		3.9				1.30	3	2	37	67	33
3	ACTIVATED RUBBER		2.305		4.7	12.8	6.5	5.8	2.58	5	5	24	100	0
4			2.282		5.6				1.77	5	4	24	80	20
5	Asphalt Rubber	18% Rubber	2.253	2.401	6.2	- 19.0	9.8	8.2	3.06	5	5	24	100	0
6	Aspilate Rubbel		2.245		<mark>6</mark> .5				4.39	6	6	24	100	0
7	SMA 0.4% Dind	5.2%	2.362	2.524	6.8	17.0	14.0	11.3	3.07					
8		Bitumen	2.350	2.354	7.2				2.12					
9	— SMA - 0.4% Fibers	6.4%	2.346	2 5 25	7.1	10.0	7.5	6.0	3.46					
10		Bitumen	Situmen 2.359		6.6	10.0	1.5	0.0	2.72					

MIXES WITH HIGH RAR PERCENTAGE SHOW RECOVERY AFTER DEFORMATION

MIXES WITH HIGH RAR PERCENTAGE SHOW RECOVERY AFTER DEFORMATION

FATIGUE

RAR MIXES HAVE BETTER FATIGUE LIFE THEN ANY OTHER MIX EVER TESTED

SHRP Corporation

Russian Bitumen

Flexural Fatigue 10 Hz, 20ºC, 600 Micro Strain

RAR MIXES HAVE BETTER FATIGUE LIFE THEN ANY OTHER MIX EVER TESTED

Flexural Fatigue Life (20 C, 10Hz)

THINGAP with RARX has incredible fatigue life !!!! SHRP Corporation

Torsional Device (30 Degrees)

SHRP Corporation

Demonstration Projects with RAR

- 2 in Russia (1 Dense and 1 Gap)
 - 7 in Italy (3 Dense, 2 SMA, 2 Gap) 3 in Israel (1 SMA, 2 dense mix)
 - 2 in France (2 SMA) 1 in Bulgaria (SMA)
 - 3 in Sweden (3 THINGAP)

SHRP Corporation

COMO, Italy, DEC 2014 (gap graded)

COMO, ITALY, Dec, 2014

FRANCE

FRANCE

FRANCE

FRANCE (dense graded 1.5% weight of mix)

Advantages of RAR X (With GAP or THINGAP graded gradations) MORE RUT RESISTANT THEN ANY SMA MIX MORE FATIGUE LIFE THEN ANY ASPHALT RUBBER MIX. IMPROVES NOISE REDUCTION

Advantages of RAR X

- Easy storage and Easy transport.
- No need for AR blenders or SBS blenders
- Improve on asphalt and mix properties.
- Less energy spent in the production of Asphalt Rubber.
- No more Re-heat cycles on the job site.
- Can make new improved mixes with even more crumb rubber. Great fatigue and rutting resistance, great recovery, self healing.
- At other lower percentages can reach just about any PG grade (positive side as negative side controlled by the base crude).
 - COST EFFECTIVE!!!

 A product that can REPLACE and improve bitumen with great economical and environmental advantages

 Profitable business producing RAR X and selling it at 5% below normal bitumen prices

THANK YOU

Dr. Jorge B. Sousa

<u>jbs@shrp.biz</u> Tm EU: +351 917549971 Tm USA: +1 925 206 0198

THANK YOU

Dr. Jorge B. Sousa

<u>jbs@shrp.biz</u> Tm EU: +351 917549971 Tm USA: +1 925 206 0198

